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Introduction

Quantum entanglement serves as a fundamental resource for various quantum information and
communication protocols, including quantum teleportation, superdense coding, and quantum error
correction. Entangled qubits exhibit the remarkable ability to surpass classical computers with
exponential speedup, underscoring their crucial role in universal quantum algorithms. While quantum
entanglement is an experimentally well-established phenomenon, its precise and reliable
characterization remains an ongoing and challenging problem in the field of quantum science and
technology. The challenge involves an optimization task, namely, the minimization of the distance of a
given state p over a convex subset of all density matrices, which is computationally intensive in
conventional approaches. Explicitly, if we denote the set of all disentangled states (density matrices) as
D, which is a convex subset of all density matrices, an entanglement measure can be defined as follows
E(o) = mind(p, o).
0ED

Here, d represents any distance function between two density matrices such that E (o) meets the criteria
of entanglement measures [1]. In this project, we focus on a few-qubit system to develop a machine
learning algorithm through Bayesian optimization to evaluate some entanglement measures, such as the
quantum relative entropy, Bures measure of entanglement, and geometric measure of entanglement [1,
2, 3]. We would also like to generalize this method to analyze entanglement among a large number of
qubits.

Since the nature of the optimisation landscape is not known beforehand, we will follow a global
optimisation approach, namely Bayesian optimisation [1].

Task

Within the scope of the project, the task will be to formulate the entanglement characterisation problem
as a global optimisation problem. We will implement the objective function in Python, and the
optimization routines using PyTorch or Tensorflow. We will begin with a (small scale problem, two-
qubit system, which would involve optimization of four variables function), and subsequently increase
the complexity to address large number of qubits systems.

Required expertise

1. Good understanding of Python programming
2. Basic understanding of machine learning / willingness to learn about machine learning, neural
networks and quantum information processing

References:
1 - Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & De Freitas, N. (2015). Taking the human out of the
loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1), 148-175.
2- V. Vedral et al., Quantifying Entanglement, Phys. Rev. Lett. 78, 2275 (1997).
3- P. Marian and T. A. Marian, Bures distance as a measure of entanglement for symmetric
two-mode Gaussian states, Phys. Rev. A 77, 062319 (2008).
4- T.-C. Wei and P. M. Goldbart, Geometric measure of entanglement and applications to
bipartite and multipartite quantum states, Phys. Rev. A 68, 042307 (2003).
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Abstract

Precisely characterizing quantum entanglement is an important prob-
lem for quantum information and communication technologies and is a sig-
nificant challenge. Despite its well-established experimental basis, the ac-
curate quantification of quantum entanglement involves overcoming sub-
stantial computational demands. One approach includes minimizing the
distance between a given quantum state and a convex subset of den-
sity matrices. Such optimization problems become exceedingly time and
resource-consuming as the size and complexity of the quantum system
grows. The focus of this work is on developing an innovative machine-
learning method using Bayesian optimization. This method is designed
to efficiently evaluate entanglement measures, such as the geometric mea-
sure of entanglement, particularly in systems with a limited number of
qubits. We demonstrate that the proposed approach enhances the accu-
racy and efficiency of entanglement characterization, potentially positively
impacting the field of quantum computing and communication.



1 Introduction

Quantum entanglement, first described by Einstein, Podolsky, and Rosen [1],
and later by Schrédinger [2], emerged as a peculiar quantum phenomenon chal-
lenging the completeness of quantum theory. Bell’'s work further illuminated
its peculiarities, demonstrating experimentally testable deviations from classi-
cal physics [3]. Now recognized as a crucial resource in quantum information
theory, entanglement underpins groundbreaking protocols like quantum cryp-
tography [4], teleportation [5], and measurement-based quantum computation
[6]. This evolution from a theoretical anomaly to a practical tool illustrates the
significant steps made in quantum science and technology.

Despite its experimental validation, the precise and reliable characterization of
entanglement remains a challenging and vital area of ongoing research, especially
due to the significant role entanglement plays in quantum computing. Entangled
qubits are the cornerstone of quantum information processing, providing expo-
nential speedup over classical computers for certain algorithms. The character-
ization of quantum entanglement not only helps to understand the fundamental
aspects of quantum theory but is also crucial for practical implementations of
quantum computing.

Entanglement measures are measurable properties that enable the evalua-
tion of the strength and nature of entanglement within a quantum system. The
challenge in characterizing entanglement involves an optimization task, the min-
imization of the distance of a given quantum state p over a convex subset of
all density matrices that represent disentangled or separable states. This opti-
mization is computationally intensive using conventional approaches due to the
high-dimensional nature of the problem and the complex structure of quantum
states.

Explicitly, if we denote the set of all disentangled states (density matrices) as
D, which is a convex subset of all density matrices, an entanglement measure
can be defined as follows:

E(o) = ;Iéijrjl d(p, o).
Here, d represents any distance function between two density matrices such that
E(o) meets the criteria of entanglement measures. Such criteria requires that
the measure is zero for disentangled states and positive for entangled states,
invariant under local unitary transformations, and non-increasing under local
operations and classical communication (LOCC).
In this project, we focus on a two-qubit system to develop a machine-learning
approach through Bayesian optimization. This modern approach is chosen to
navigate the complexity of evaluating some entanglement measures efficiently
and effectively. Bayesian optimization provides a probabilistic model-based ap-
proach for global optimization that is particularly well-suited for optimization
problems that are noisy, costly to evaluate or have a large number of parameters,
as is often the case in quantum computing applications.
Our objective is to use Bayesian optimization to iteratively update our knowl-
edge of the entanglement landscape and to guide the search for the optimal
distance measure in the space of density matrices. By integrating principles
from quantum information theory and machine learning, we aim to create a ro-
bust tool that can accelerate the characterization of entangled states and thus,



potentially, the development of quantum technologies.

In Section 2, we explore quantum entanglement in multipartite systems, focus-
ing on quantification methods and their mathematical foundations. This part
provides the core theoretical concepts for our later computational approaches.
The methodology with an explanation of the Bayesian optimization technique
and an introduction to our code is given in Section 3. Our result is presented
in Section 4 and discussed in Section 5.



2 Exploring Quantum Entanglement

In this section, we explore the fundamental aspects of bipartite entanglement.
This discussion forms the foundation for understanding the more complex topic
of multipartite entanglement, which is addressed in the subsequent section. The
exploration of bipartite entangled states facilitates a comprehensive introduction
to the central concepts of entanglement detection.

2.1 Quantum States and Bipartite Systems

In quantum mechanics, physical systems are described by quantum states. 'Bi-
partite’ systems refer to systems composed of two parts (or particles). Entangle-
ment occurs when the quantum states of these two parts become interconnected
in such a way that the state of one particle cannot be described independently of
the state of the other. This connection persists even if the two particles are sep-
arated by large distances. If one measures a property (like spin or polarization)
of one particle in an entangled pair, one instantaneously determines the corre-
sponding property of the other particle, regardless of the distance separating
them.

2.2 Single-Particle Systems and Hilbert Space

The characterization of a single-particle system in quantum mechanics is essen-
tially described within the Hilbert space framework, represented as H. Within
this framework, a state |¥) is defined as a unit vector, conforming to the nor-
malization condition (¥|¥) = 1. This condition implies that the integrated
probability of the particle’s presence throughout the space is exactly one, a core
principle in quantum theory.

The Hilbert space is further structured by a basis B, which consists of a complete
set of state vectors {|Wo),|¥1),|¥2),...}. These vectors serve as the founda-
tional elements that allow any quantum state |¥) to be represented as a linear
combination of the basis vectors. Specifically,

) =3 el 1)

where the coefficients ¢; are constrained by the condition

D lalf=1. (2)

7

This relation ensures the preservation of probability within the quantum system.

2.3 The Qubit and the Bloch Sphere

Introducing the qubit concept, the quantum counterpart to the classical bit, the
qubit’s Hilbert space has a dimensionality of dim(#) = 2, equating to H = C2.
Visualized on the Bloch sphere, a qubit state |¥) is represented as

(W) = ¢ol0) + ca[1), 3)

with the computational basis states |0) and |1), and coefficients ¢y and ¢; pa-
rameterized by angles 6 and ¢. The Bloch sphere is visualized in figure 1.



Figure 1: Bloch sphere, a geometrical representation of pure state space of a
qubit, the parameters 6 and ¢ are interpreted in spherical coordinates [7].

2.4 Seperable state and Entaglement

In quantum mechanics, separable states in multipartite systems are quantum
states that can be expressed as a convex combination of product states. Product
states, on the other hand, are multipartite quantum states that can be written
as a tensor product of states within each individual subsystem. Mathematically,
for a bipartite system (two subsystems), a separable state |®) can be expressed
as the tensor product of the states of the individual subsystems:

|®) = [®1) ® |P2) (4)

Here, |®1) and |®2) are the states of the individual subsystems. This concept
can be extended to multipartite systems with more than two subsystems.

On the other hand if a composite system consists of two entangled subsystems,
the joint state of the system cannot be expressed as a simple tensor product
of the individual states of the subsystems. In other words, the entangled state
cannot be written as the above equation. Instead, the joint state of the entangled
system is described by a more complex superposition of states, and measuring
one subsystem instantaneously determines the state of the other, regardless of
the distance between them.

2.5 Quantum Entanglement and Multipartite Systems

Quantum entanglement presents a distinctive challenge, particularly when clar-
ifying the interconnections within a multipartite quantum system. By consid-
ering a general n-partite pure state

|¥) = Z Xp1p2...pn
p1i...p

the entanglement is quantifiable by the geometric distance or angle between the
state |¥) and the nearest separable state |®), represented by the norm squared

61()11)6(2) el (5)

P2 " Pn

2

I1%) = [@)”- (6)

Here, ® = ®M®?) . &™) is an arbitrary separable (i.e., Hartree) n-partite
pure state, where the index i = 1,...,n labels the parts, and

(@) =3 eplles?) (7)

Pi



The entanglement eigenvalue A is derived by resolving an eigenproblem that
minimizes this norm under normalization constraints, indicative of the entan-
glement level. A greater A implies a state nearing separability and thus, is less
entangled. For bipartite systems, this constitutes a linear problem akin to the
Schmidt decomposition, while for systems with more components, the problem
becomes nonlinear, often requiring a numerical solution approach.

2.6 Analytical Determination of Entanglement Eigenval-
ues in Specific Families of Pure States

The maximum eigenvalue, denoted as A ax, referred to as the entanglement
eigenvalue, signifies proximity to the nearest separable state and is equal to the
maximum overlap

Amax = max[|(2[¥)]], (8)

where |®) is an arbitrary separable pure state.
By adopting F2_ =1 — A2 as our entanglement measure in bipartite appli-

sin max
cations solving the problem is equivalent to finding the Schmidt decomposition.
Where the entanglement eigenvalue is equal to the maximal Schmidt coefficient.
For example with a given Schmidt decomposition of some two-qubit pure state

for0<p<1:

W) = v/pl00) + /1 = p|11). (9)
We can read off the entanglement eigenvalue:

Amax = max{\/f), \% 1 _p}

The entanglement coefficient C' for this state is represented by the expression

24/p(1 — p). So we have:
1
Ay = S+ V1I-C?) (10)

which holds for arbitrary two-qubit pure states.

2.7 2-Qubit System

In this section, we explore the specifics of a 2-Qubit System, which is a funda-
mental building block in the study of quantum mechanics and quantum com-
puting. We consider a quantum state |¥) within a 2-Qubit System. This state is
described by a linear combination of base state, represented by complex numbers
a, b, c,d. Mathematically, the state is expressed as:

W) = ; (11)

QO o

It is subject to a normalization condition, which maintains the fundamental
principle of quantum mechanics that the total probability of all possible states
must sum to one. This is expressed as:

la]> + [b* + |c|* + |d|* = 1. (12)



We define A(®), which has an important role in determining the entanglement
measure of our system and understanding how entanglement varies with different
quantum states. This function maps a pair of points on two unit spheres to the
real numbers. Mathematically, this is represented as:

A(®) = (@|¥) = aqga + a1 fB2b + fragc + S1 52, (13)

The separable two-qubit state can be parametrized as a product of two unit
spheres S? x S? where based on (2.4) we have

|®1) = cos <921> |0) + €* - sin (021) 1) (14)

|®2) = cos (%) |0) + €2 - sin (622) 1) (15)

The variables 6; ranging from 0 to 7 and ¢; ranging from 0 to 27 to the real
numbers R.

The key to quantifying entanglement lies in identifying the global maximum of
A(®). This maximum value indicates the highest degree of entanglement achiev-
able under given conditions. To find this maximum, we must perform an opti-
mization procedure over the domain of the spherical coordinates (6;, ¢;). These
coordinates represent points on the unit spheres S2, and their optimal combi-
nation leads to the maximum entanglement measure. By quantifying entangle-
ment accurately, we can better understand the behavior of quantum systems
and improve the design of quantum algorithms and quantum communication
protocols.

In this project, we solve the optimisation problem given in (8) for a family of
U computationally. We use the Bayesian Optimisation method [8] to find the
maximum, calculate the entanglement measure E?,, defined in section 2.6, and

compare it to the analytical solution given in (10).



3 Methodology

In the following chapter, the optimization strategy is described. Furthermore,
the implementation is described, which leads to the results in Section 4. A de-
tailed description of the used Python library in which the optimization strategy
is implemented is also given.

3.1 Bayesian optimization

Bayesian optimization is a sequential model-based approach which aims to max-
imize an unknown objective function f:

z* = arg maxf(z)

where X represents the space of interest and is usually a subset of R?. However
it is versatile enough to be extended to other search spaces such as categorical or
conditional inputs. It is assumed, that the unknown function f does not have
a simple closed form. The derivatives may be unavaible or computationally
expensive to obtain, we rely solely on the evaluation of f at point x. The
evaluation can be noisy.

Since f(z) is noisy and/or computationally expensive to evaluate, the goal
is to evaluate f(x) at strategically selected points. These points iteratively lead
to the global maximum of f(x) by trading off exploration and exploitation. To
find a sequence of query points, a so-called acquisition function a,, : X — R
is designed. The function a,, is relatively cheap to maximize, due to having
analytical forms, leading to the next query point.

The model treats the unknown objection function f(z) as a function sampled
from a distribution, described initially by a prior, and subsequently updated
upon obtaining data (from f(z)) to get a posterior distribution. As the sampling
process (via the acquisition function) is iterative, the posterior is also updated
iteratively.

The process is shown in Algorithm 1.

Algorithm 1 Bayesian Optimisation Method

: Initial prior belief regarding the potential objective function f

: for 1,2,... do

: maximize acquisition functions to choose the next query point

: refining the model iteratively as data comes in through Bayesian posterior
updates

The query points are chosen by harnessing the uncertainty in the predictive
distribution to guide the exploration process. This work considers the expected
improvement acquisition function owing its balanced exploitation behavior [§].
Essentially, the acquisition function helps balance the trade-off between explo-
ration and exploitation. The goal is to choose the next point to evaluate in
the objective function by considering both the expected improvement in the ob-
jective value and the uncertainty associated with that improvement, implying
that x,,41 is chosen by maximizing a,. Figure 2 illustrates how the acquisition
function is used to choose the next point to evaluate f at. Each iteration shows
the maximum of the acquisition function as the next query point.
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Figure 2: Example of Bayesian Optimization over three iterations. It shows
the usually unknown objection function in red and the posterior uncertainty (in
green) and mean (green line). In blue the different a,, values are shown, with
the maximum labeled. The maximum indicates the new observation point.



There are different functions, that can be used as acquisition functions a.,,
which are separated according to three strategies [8]. The probability of im-
provement or expected improvement are examples of an improvement-based
policy. Another option is to use optimistic policies such as upper confidence
bound. One can also use information-based policies such as Thompson sam-
pling or entropy search.

These models can be parametric or non-parametric. In the case of this
project, the focus lies on non-parametric models. To build the surrogate model,
one can use many approaches, such as polynomial interpolation, neural net-
works, support vector machines, and random forests. In this project, we use
Gaussian processes.

3.1.1 Gaussian Processes

The Gaussian Process approach uses the kernel trick to construct a Bayesian
non-parametric regression model [8].

A Gaussian process (GP) is a stochastic process that corresponds to the collec-
tion of random variables such that the joint distribution of every finite subset
of those random variables is multivariate Gaussian [9].

A GP is fully characterized by a mean p(z) function and a covariance function
k(z,z’) (kernel). The mean function represents the average behavior of the pro-
cess, while the covariance function captures the relationships and dependencies
between different input points. The model is built on the assumptions:

f1X ~N(m, K) (16)
y‘f’o'QN./\/'(f7o'2I) (17)

M is mean vector with m; := po(z;) and K is covariance matrix with K; ;=

k(x;,x;) [8]. It is assumed, that one is dealing with a Gaussian distribution, in
which uncertainties are updated via the data points. One can see the Gaussian
Process in Figure 2 depicted by the green uncertainties and the mean prediction
(dotted green line).
GP’s predictive power is maximized by selecting the right covariance/kernel and
the appropriate hyperparameters associated with the corresponding kernel since
they influence the smoothness, periodicity, and other properties of the functions
sampled from the GP. Common kernels include the radial basis function (RBF)
and the Matérn kernel [8].

3.2 Libraries

Scikit-learn [10] is a machine learning library for Python. It provides tools for
data analysis and modeling, including a wide array of machine learning algo-
rithms for tasks such as classification, regression, clustering, and dimensionality
reduction. The main library we will use is built on Scikit-Learn, which is Scikit-
Optimize and specifically the function gp_minimize [11].

Scikit-Optimize, or skopt, is an efficient library which is designed to minimize
or maximize expensive and noisy black-box functions. It implements several
methods for sequential model-based optimization.

In gp_minimize, Bayesian optimization is implemented. The function is ap-
proximated by a Gaussian process, the kernel built between the parameters.
Hyperparameter are the following;:

10



e Number of calls
e Number of initial points

e The acquisition function is to be used

3.3 Structure and implementation of code

The core parts of our algorithms are as follows:

1. To begin with, the points generated are sampled from a spherical surface.
In order to achieve this we generate two lists phi and theta which contain
our polar and azimouthian coordinates. In the current implementation we
have discretized the space into 2000 points.

2. After the sampling is performed we construct our o and § using the fol-

lowing equations.
(3)
a; =cos | —
2

cos <92>

oy = —

2 2

B1 = €'t - sin (021)
By = €' . sin <922>

3. The black box function which is to be optimized takes as input a list of
4 numbers ranging between 0 and 2000 signifying the index locations of
the phi and theta lists. Then it proceeds to calculate the inner product
of ® and the given W. Utilizing the optimization method gp minimize,
designed to determine the minimum value of a function, we negate the
result to effectively find the maximum.

4. In the optimization process, by using the space variable in order to create
continuous search space for four variables, denoted as x1, s, x3, and x4.
These variables are constrained within the range [0, N — 1], where N is a
predefined constant representing the number of points we have decided to
discretize the spherical space. In this case the number is 2000.

Next, we employ the gpminimize function to perform the optimization.
The hyperparameters configuration includes the choice of acquisition func-
tion where the Probability of Improvement (PI) function was chosen. The
PI function quantifies the probability that the objective function value at
a candidate point will be an improvement over the current best-known
value. Finally the last two hyperparameters are the number of optimiza-
tion calls and the number of initial random points.

11



The objective function and optimisation procedure can be summarised in the
following pseudo code.

Algorithm 2 Objective function

Input: a,b,c,d
Output: Inner product (®|¥)
a1+ cos (%)

Qg $— COS (92)
1

(%)
)

s

B « €t - sin (
Ba + €% . sin (%2
(@V) + ajaga + ayfeb + frage + B1fad
return -(®| )

=0

Algorithm 3 Optimization Process

1: Input: Objective function f, Search space S, Hyperparameters

2: Output: 01,65, 01, @2 > Optimal solution
3: Procedure:

4:  Initialize random points in S

5:  Evaluate the objective function f for the initial points

6:  Set the current best solution as the initial points

7. for each optimization iteration do

8: Select a candidate point in S based on the acquisition function
9: Evaluate f for the candidate point
10: if Objective value at candidate point is better then
11: Update the current best solution
12: end if
13: Update the surrogate model based on the observed points
14: end for
15: Return: 61,605, ¢1, p2

4 Results

By first taking into consideration the pure states derived from the family

V) = /p[00) + /T —pl[11)

presented in Section 2.6. We first began by discretizing the parameter p into 30
intervals. This discretization allowed us to generate a corresponding family of
pure states

W) = : (18)
Vi—p

For each state within the family, we computationally determined the global
maxima using our algorithm. Subsequently, we plotted the obtained results
alongside analytical results. In Figure 3 the results are presented.

12



1.0 1 h
0.9 A
0.8 A
x
©
£
<
0.7 A
0.6
—— Analytical graph
® Computational results
0'5 L T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
p

Figure 3: Comparison of Computational and Analytical Results

5 Discussion and Conclusions

The results closely align, as indicated by an error of approximately 0.003 percent
in the worst cases compared to the expected theoretical results. Given that
the computational outcomes closely mirror the expected analytical results, the
utilization of this algorithm enables precise measurement of entanglement in a
two-qubit pure system.

In this work, we have designed an algorithm for characterizing the entanglement
measure of quantum states using Bayesian optimization and the geometric mea-
sure of entanglement. The algorithm has the ability to accurately describe the
entanglement measure thus marking it as a good starting point, opening avenues
for the potential extension of this approach to address the problems posed by
systems involving multiple qubits. Notably, it addresses a significant challenge
inherent in these systemsthat as the number of qubits increases, the complexity
of the system grows exponentially. This phenomenon is a result of the intricate
entanglements and interactions that occur between qubits, creating a computa-
tional problem that becomes exponentially expensive to compute. Furthermore
another fundamental challenge in multiple qubit systems—the lack of analytical
solutions. Unlike classical computing problems and the 2-qubit problem, where
analytical solutions can often be derived, these systems pose a unique challenge
due to their inherent probabilistic nature and the principles of superposition
and entanglement. The absence of analytical solutions means that traditional
methods for solving problems may not be directly applicable to quantum sys-
tems.

The algorithm aims to tackle both problems by efficiently characterise those
systems using the geometric measure and efficiently using the Bayesian method.
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